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A recent study in South Africa has confirmed, for the first time, that a vaginal gel formulation of the anti-
retroviral drug Tenofovir, when applied topically, significantly inhibits sexual HIV transmission to
women [10]. However the gel for this drug, and anti-HIV microbicide gels in general, have not been
designed using full understanding of how gel spreading and retention in the vagina govern successful
drug delivery. Elastohydrodynamic lubrication theory can be applied to model such spreading of micro-
bicide gels, which are inherently non-Newtonian [13,15]. A yield stress is emerging as one of the impor-
tant properties of microbicide gel vehicle deployment, as this may improve retention within the vaginal
canal. On the other hand, a yield stress may decrease the initial extent of the coating flow. Here, we first
explain a certain yield stress paradox observed generally in many lubrication flows. Four conditions are
determined, via scaling analysis, which mitigate the inconsistency in the use of lubrication theory to ana-
lyze the specific problem of elastic wall squeezing flow of yield stress fluid. Parameters characterizing
these conditions are obtained experimentally for a test gel. Using them, it is shown that the lubrication
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approximation may be applied to the elastic wall-squeezing problem for this gel.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Elastohydrodynamic flow theory can be used to model a num-
ber of flows of biomedical interest [1-5]. In this regard, a rela-
tively recent and compelling problem is application of vaginal
gels for delivery of mucosal antigens or of topical ‘microbicide’
molecules to inhibit infection by sexually transmitted pathogens
such as HIV [2,6-9]. This low-cost modality could have substan-
tial biomedical and epidemiological importance, enabling women
to control their susceptibility to infection. Very recently, use of a
vaginal gel formulation of the antiretroviral drug Tenofovir has
shown significant reduction in HIV transmission in a clinical trial
[10]. This is the first time that a topical microbicide gel has
shown significant efficacy, and comes after failures of several
other gels in prior trials. This initial success notwithstanding,
there is widespread agreement that more effective microbicide
delivery vehicles must be developed. This should be based, in
part, upon a better understanding of how gel spreading and
retention in the vagina govern successful anti-HIV drug delivery.
Once that understanding is developed, specific gels can be
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created with characteristics designed to optimize their spreading,
retention and drug delivery [11].

The vaginal gel coating flow problem involves: significant defor-
mation of tissue accompanying the flow; little alteration of gel
physical properties associated with pressure and temperature
changes [12]; non-Newtonian gel behavior; and oftentimes yield
stress behavior (depending upon the composition of the gel [11]).
There are multiple mechanisms by which current microbicides
act to prevent infection by genital pathogens. For all of these, a
deeper physical understanding and mathematical modeling of
vaginal coating flow is clearly needed. Recently, we developed a
framework for understanding the transluminal flow (along the
vaginal canal) of microbicide vehicles driven by combined
elastic squeezing and gravitational sliding [13]. These are believed
to be the primary forces acting to drive such flow [14]. We then
enhanced our model with a convective-diffusive transport equation
to characterize water transport into the gel and, thus, spatially
inhomogeneous gel dilution [15]. Neither of these initial
studies took into account yield stress behavior of the fluids, despite
the fact that many current microbicide gels do exhibit such
behavior. The goal of the present work is to incorporate such yield
stress behavior into the biomechanics of vaginal coating by
non-Newtonian gels.

Coating by a microbicide vehicle is a physically diverse process
in which several factors interact to govern the flow. Among these
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are gravity, transvaginal pressure gradients due to contractility of
the supporting viscera, the transverse squeezing forces from the
distended epithelium, the possible yield stress as a rheological
property of the microbicide gel, and the dilution by vaginal fluids
being exuded from the boundaries (i.e. tissue surfaces). There have
been initial fluid mechanical studies of intravaginal vehicle flows;
these have focused on the individual effects of gravity or epithelial
squeezing [16-18]. These initial studies are instructive in develop-
ing a physical understanding of the mechanisms of intravaginal
vehicle deployment flows. The model developed in [13] incorpo-
rates simultaneous effects of a longitudinally directed force along
the vaginal canal, e.g., gravity, and transversely directed epithelial
squeezing in a lubrication flow analysis. Both non-Newtonian (in
the form of Carreau constitutive model) and Newtonian fluid
behaviors were considered. The Carreau model was chosen be-
cause microbicide gels (which are highly hydrated) are shear thin-
ning and typically exhibit a plateau at low shear strain rates in a
log-log plot of shear stress vs. shear strain rate. Because vaginal
coating flows are slow flows in which much of the flow field expe-
riences low shear strain rates, it is important to employ a constitu-
tive equation that embodies such plateau behavior. The Carreau
model does precisely this, while the Power Law model overesti-
mates shear stress at the biologically relevant low shear strain
rates. In our prior analysis, a single dimensionless number, inde-
pendent of viscosity, was derived to characterize the relative influ-
ences of squeezing and gravitational acceleration on the coating
flow in the Newtonian case. A second scale, involving viscosity,
was used to determine the spreading rate. In the case of a shear-
thinning fluid, the Carreau number also played a role. More
recently, we extended this analysis, incorporating the effects of
gel dilution due to contact with vaginal fluid produced at the
gel-tissue interface [15]. Here, the model developed in [13] was
supplemented by a convective-diffusive transport equation to
characterize water transport into the gel, and, thus, local gel dilu-
tion. The problem was solved using a multi-step numerical scheme
in a moving domain. The association between local dilution of the
gel and its rheological properties was obtained experimentally,
delineating the way constitutive parameters of a shear thinning
gel were modified by dilution.

In the present study, we add yield stress behavior of microbi-
cide vehicles to the elastohydrodynamic lubrication model of
[13]. A microbicide gel can be designed to have a yield stress, e.g.
by including derivatives of polyacrylic acid such as Carbopol and/
or polycarbophil in its composition. In a limiting case, a yield stress
fluid is a viscoplastic material that behaves as a rigid body at low
applied stress but flows as a viscous fluid at higher stress, i.e.
behaving as a Bingham fluid [19]. The physical basis of such behav-
ior is that the liquid contains particles (e.g., clay), or large mole-
cules (e.g., polymers) that interact, creating a weak solid
structure; a certain amount of stress is required to break this struc-
ture. Yield stress fluids are used, for example, as mathematical
models of the flow of mud in offshore engineering, and in the anal-
ysis of slurries.

The flows of yield stress fluids have been investigated under a
range of conditions in the literature [20,21]. It is common for flows
of these fluids to exhibit complex, spatially inhomogeneous behav-
ior, i.e., mixed flows of rigid body and viscous flow simultaneously.
Details depend upon the absolute value of local stress throughout
the fluid. This suggests the concept of the yield surface, over which
the value of stress is equal to the yield stress. A yield stress fluid
follows a different constitutive equation when the absolute value
of stress exceeds the yield stress, delineated by the location of
the yield surface. Due to such rheological behavior, yield stress flu-
ids can be analyzed in separate domains of validity for each consti-
tutive equation, as determined by the absolute local value of stress.
As an alternative, Smyrnaios et al. used a continuous rheological

model for yield stress fluids [22], which spans the entire domain
with a single constitutive model [23]. Here, the yield surface does
not have to be placed within the domain [24]. Such an approach
was originally proposed by Papanastasiou [25]. In the present
work, we employ another continuous rheological model, i.e. the
biviscosity model [26], implemented for a Carreau-like fluid.

Although fundamental, the developments here will be useful to
the microbicide community. The concept of a yield stress fluid as
the gel delivery vehicle for an intravaginal microbicide is attractive
because such a material may tend to stay in place after coating vul-
nerable surfaces (when shear stresses are sufficiently small) and
not be prone to leakage from the vagina. In addition to being more
cosmetically acceptable to users, this may be an important factor
in sustaining drug delivery, and also providing a physical barrier
to HIV migration from semen to tissue [27].

2. Problem formulation

In this section, we first discuss the physics of the flow problem,
and then explain a certain yield stress paradox observed in lubrica-
tion flows. We then determine conditions that render the lubrica-
tion theory of elastic wall squeezing flow consistent with the study
of a yield stress fluid, using scaling analysis. We present a biviscos-
ity model of a Carreau-like fluid with a yield stress, and the
Reynolds lubrication equation as an evolution equation for the
shape of a bolus of non-Newtonian fluid. The equations are devel-
oped in the symmetric domain —h(x,t) <y < h(x,t) and a body force
is included in the x-direction. The physical problem and computa-
tional domain are sketched in Fig. 1. The model is formulated in a
2D Cartesian domain. The simplification of two-dimensional flow
is quite relevant anatomically; the cross-section of the undistend-
ed human vaginal canal is “H” shaped, with the transverse dimen-
sion large compared to the vertical openings on its two sides [28].

2.1. Physics of the flow problem

The elastohydrodynamic flow of microbicide gels is driven by
initial distention of elastic surfaces (squeezing) and potentially,
gravitational acceleration which depends on the woman'’s posture.
Following the placement of a gel into the vagina, the vaginal walls
distend and this creates an elastic restoring force and leads to a
pressure-gradient along the vaginal canal in the longitudinal direc-
tion. For the absence of a yield stress, for a non-Newtonian fluid,
we make use of the lubrication approximation, obtaining the gov-
erning equation as [13],

(97’1 B 2—2—]/nh
at ~ 3Cr(1+ 2n)B(W — 4h,

x [~ BhCr(W — 4h,)]""h, + 2>°1"Cr(1 + 2n)
x B(W — 4h,)h*h . — 3h{21/"Cr(1 +2n) + (W — 4h,)*h,

+8[7[3hCr(W74h,x)]1/"h,xx}} )

j {6(1 +2n)(W — 4h,)
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Fig. 1. Definition sketch of the vaginal canal, emphasizing the longitudinal
direction. The introitus is to the right. The transverse direction has an “H” shaped
cross-section; see text.
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~1/(1-n) ~ i ~

D % = ),% is the Carreau number and W = Epg/M is
a dimensionless group comparing gravitational and squeezing ef-
fects which drive the flow. The sign of b is chosen so as to render

absolute value of 7,, positive. The constitutive model relates the
shear-rate and the shear stress, 7, = Ty F(Ty), where F(7) =L+

where Cr =

2\ (1=m)/
i (%)( "™ for a Carreau-like fluid. This features shear thinning
with a plateau at low shear rates, leading to a finite viscosity at
zero-shear rate. The highly hydrated gels applied vaginally tend to
exhibit such behavior. In the case of a Newtonian fluid,
F(T) =1/mg (or n =1 in the Carreau-like model), and the governing

equation reduces to,

oh W ,0h [ (0h\*> 1 38°h|
8t+4h8x{h () ~3" 5O @

Details of these derivations can be found in [13]. Note that
dimensional variables were indicated with a tilde in [13]. Here
and in the model that we present below, we have made use of
the one dimensional constrained continuum model [29] approxi-
mation to account for the elastic forces of the vaginal walls. In this
approximation, the fluid pressure near a compliant wall is linearly
related to the local deformation of that wall. In general, for a defor-
mation h, the fluid pressure is given by p = (E/T)h = Mh. Here, E is
the elastic (Young’s) modulus of the compliant layer, T is its thick-
ness, and M is termed the compliance of the elastic wall.

The presence of a yield stress complicates the problem in the
form of a yield stress paradox, which is discussed in the next sec-
tion. In solving the yield stress case we again make use of the lubri-
cation approximation. In this analysis, we seek a method of
reasonable and consistent approximation for the fluid mechanics,
which will be amenable to rapid solutions, such as one would need
in microbicide gel design. The constrained continuum model has
been previously used by Lighthill and colleagues in the analysis
of deformation effects in lubrication theory based blood flow
[1,30]. Given our limited understanding of vaginal wall mechanics,
we believe it is reasonable to use that model here. As an improved
understanding of those mechanics emerges, then more accurate
numerical approaches to solution of the fluid mechanics will be-
come appropriate.

2.2. Yield stress paradox

Previous analyses of squeezing flows of Bingham fluids with the
lubrication approximation have produced conflicting results [31].
One must expect an un-yielded region of the yield stress fluid near
the plane of symmetry, which would not flow; that is, this region
should behave like a solid according to the rheological properties
of a yield stress fluid, (e.g., Bingham fluid, Herschel-Bulkley fluid).
However, owing to the fact that the apposed walls are approaching
one another, there must be a corresponding flow, in the longitudi-
nal direction. This paradox originates in the neglect of the normal
stresses compared with the shear stresses while following the
lubrication approximation. Hence, normal stresses should be con-
sidered for the squeeze flow of a Bingham fluid, i.e., lubrication
theory might not be applicable when the behavior of a yield stress
fluid is analyzed [22].

The presence of the rate of strain in the denominator of the con-
stitutive equation of a Bingham fluid renders this model singular as
the yield surface is approached. The biviscosity model is one of the
models proposed in order to remove this singularity [32,26]. That
model allows for the determination of certain conditions under
which lubrication theory may be applied to the squeezing flow of
the yield stress fluid. The constitutive equation of the biviscosity
model of a Newtonian fluid with yield stress is written,

u if |t|<|7T
Txy:{nmy KISk 5

n, 5%+ 1, otherwise

where, 7, =14(1 - ) and ¢ is the viscosity ratio, ¢ =1,/n;. Fig. 2
shows the stress-strain-rate curve of the biviscosity model of a
Newtonian fluid. The simple Newtonian case is recovered when
6 =1. The case of a Bingham fluid [19] is approached in the limit
6 — 0. Wilson [32] determined conditions that make use of lubrica-
tion theory consistent with the analysis of a biviscosity yield stress
fluid, by using scaling analysis. The condition is derived for the fluid
squeezed between two solid disks. An analogous set of conditions
consistent with the elastic wall squeezing flow is required for use
in the problem of interest here.

2.3. Elastohydrodynamic lubrication theory with a biviscosity yield
stress fluid

We begin by sketching what may be called standard lubrication
theory. The balance of linear momentum for the x- and the y-direc-
tions is written as,

op 0ty

ox Oy )
op

ay =0 (5)

Hence, with appropriate boundary conditions,

ap

ay (6)

Ty =

Yield surfaces, where the fluid starts yielding, can be located with
Eq. (6). For the surface in the interval 0 <y < h(x,t), the result is
y1, where

Y1 ="11/(9p/0x) ()

Eq. (3), the constitutive equation of the biviscosity model with con-
stant viscosity, is used here, with appropriate boundary and inter-
face conditions. This leads to an expression for the axial velocity u:

2 B2~ h(x,0%) = 2 (y - hx.1))

ify>
u= 1 6)1.;y Zy1 2 1 9P (4,2 2 Ty (8)

3 o V= Y1) + o 01— h(x.07) =32 (v, — h(x, 1))
otherwise

T

: 72
]|
1
1
aw/ o

Fig. 2. Stress-strain-rate curve of the biviscosity model of a Newtonian fluid.
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The order of the axial normal stress 7, can be obtained from the ax-
ial velocity u.
_Jom%) ify>y ©
710012 otherwise
The group of scales of the axial normal stress 7,y is calculated in

terms of other known scales, with careful manipulation of Egs. (8)
and (9).

H wH Hn yHn,
( T LT L 19

Here, H and L are length scales for the transverse (thickness) and
longitudinal directions, respectively, and G = dp/ox. On the other
hand, the scale of shear stress 7, is obtained from Eq. (6).

(GH) or (PH/L) (11)

In order to neglect normal stress, i.e., for the lubrication approx-
imation to be valid, O(.) should be much smaller than O(t,y). This
leads to the requirement

el
<E7P75’P5> <1 (12)
where € = H|L, and 6 = 12/11.

Hence, it is self-consistent to analyze a biviscosity yield stress
fluid with the lubrication approximation when Eq. (12) is satisfied.
In particular, we require t, to be small enough and ¢ to be not too
small.

2.4. A constitutive equation of a Carreau-like model with a yield stress

The ‘purest’ representative rheological model of a yield stress
fluid is the Bingham model [33]:

T=U)+ Ty
7 =0
As noted above, we have found it useful to work with a Carreau-

like model to account for details of shear-thinning behavior evi-

dent in most gel delivery vehicles [13]. The original Carreau model
(n

. . -1/2 Lo . .
can be written as /1, = (l + ()ﬂ/)2> . Here, 1 is viscosity, 7o is

if [t]>71,

13
otherwise (13)

the zero shear viscosity, / is the relaxation time of the fluid, y is the
shear rate invariant and n is the power index. The parameters of
the Carreau model can be converted into those of Carreau-like
model asymptotically [13] in the relationship mg =179 and m = 1o/
217", We can alter the constitutive equation of a Carreau-like mod-
el to include a true yield stress through simple modification, as
based on the Bingham model. This constitutive equation of a Car-
reau-like model with a yield stress would then read,

. (Ty — Ty)F(ty) if [Ty |> 1y
= 14
Py {0 otherwise (14
Here,
(1-n)/n
11 (lwl-ty i
F(Ty) = ot (55) it [ T > 7y (15)
0 otherwise

The Carreau-like model is effective in the region where |1,/ > T,.
When |1, < 1y, the fluid behaves like a solid.

2.5. Biviscosity model of a Carreau-like fluid with a yield stress
Now we follow the lead of Wilson [32], and define a biviscosity

model of a Carreau-like fluid with a yield stress. As we shall show,
the biviscosity captures more realistic yield stress behavior for the

specific types of fluids we are considering. The model (cf. Eq. (3))
may be written

[mE if [T]<|7] 16)
s %+t otherwise

where, such that 7, is yield stress, and t, = 74(1 — 9). Here, 9 is the
viscosity ratio, 6 = 1/11F(t.y). We plot the stress-strain curve of the
biviscosity model of a Carreau-like fluid at Fig. 3. Here, the exponent
n of the function F(t,) is assumed to be less than one, which means
that a Carreau-like fluid is a shear-thinning fluid. F(ty,) can be writ-
ten through modification of Eq. (15).
F a1l

(‘L’Xy)_m—0+ﬁ( - ) if [Ty|>1 (17)
Next, we present the Reynolds lubrication equation into which our
constitutive model is substituted:

oh 10 oh
where,

m {fhh (Pt myydyldy = =2°/3m if |zi<in] o

S [ F(Ty)ydy)dy otherwise

We have developed the governing equations accounting for the
gravitational forces. However, in further developments here we
shall neglect gravity for the following reasons. There is no standard
way of inserting these microbicide gels. Gravitational effects can
therefore be transient and act in any direction, as determined by
the user’s posture during and after gel insertion.

In the present analysis, the elastohydrodynamic flow is driven
by initial distention of elastic surfaces and the resultant squeezing
of the fluid bolus, which is initially at rest. This distention leads to
pressure gradients and, eventually, fluid flow. We first integrate
the x-momentum equation in the y-direction to obtain the shear
stresses. Neglecting gravity and using the lubrication approxima-
tion, this equation becomes (dp/dx = 9t/dy). Here, shear stress
can be obtained as, (t=ydp/ox =yMoh/ox). Note that at y =0,
7=0 due to symmetry. Then by substituting shear stresses into
Egs. (17) and (19), m, values are obtained. Integrating the x-
momentum equation in the y-direction twice, u; values are ob-
tained. Velocities in the y-direction (u;) are easily extracted from
the incompressibility condition. In the mean time, m, values are
substituted into the Reynolds lubrication equation, Eq. (18), and
new height profile is obtained. Iteration proceeds and updated
height profile is used to evaluate new shear stresses. The Reynolds

T
Newtonian fluid
——
—’—‘—
——
——
——
4] T—— 1/F T
7 ] (U) Carreau-like fluid

uy

A &

Fig. 3. Stress-strain curve of the biviscosity model of a (shear-thinning) Carreau-
like fluid.
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lubrication equation, Eq. (18) is solved explicitly. As a partial check
on accuracy, an asymptotic analysis of a closely related problem
was given in our previous study [13]. Another check on accuracy
was presented in [34] which tracks the integral balance of linear
momentum. Stability also should be checked because the Reynolds
lubrication equation is solved explicitly in time. A stability analysis
including the influence of the Deborah number was presented in
[34].

The representative viscosity of the Carreau-like model with a
yield stress, mg, can be used in the scaling analysis. Hence, the ratio
of the yielded fluid viscosity to the un-yielded fluid viscosity, 6, is
written in § = mo/n;. Applying the condition, €/6 < 1, one of Eq.
(12), the use of lubrication theory is self-consistent in the case
when

1M, K Mp/€ (20)

The pressure scale should also be considered here. Given the limita-
tions on magnitude of the Reynolds number and the thin layer
assumption, pressure is made dimensionless by use of a scale con-
structed from the shear stress, P = (mgU/H)/€.

The velocity scale U is chosen to be the centerline velocity for
flow due only to the compliance of the surfaces, i.e., the velocity
scale when gravity is zero [13]. For Newtonian fluids with viscosity
u, the centerline velocity of pressure driven flow is u :ll”))—ﬁ@
where 2 is pressure gradient, h is the height of the channel in
which fluid is flowing. The equation of the compliance of the elastic
wall, p=(E/T)h = Mh, can be applied to here, which leads to
ﬁM% “2—2 Hence, the velocity scale is U= MH>|(2uL) for Newtonian
fluids. In the case of a Carreau-like model, this can be written
U= MH3/(2mgl).

The pressure scale is found to be P = (MH)/2 for the elastic wall
boundaries with compliance, M. Hence, one of the conditions for
the neglect of the normal stresses is obtained from Eq. (12), which
is

_2h
(P = MH) <1 (21)
The last term of Eq. (12) can be written,
w1 _2%m
(P 5~ MH m,) <! (22)

The normal stresses of the fluid should be considered when (20)-
(22) are not satisfied. The first condition of Eq. (12) must be satisfied
in all cases due to the use of lubrication theory here.

3. Results and discussion

Overall, the use of lubrication theory in the analysis of elastohy-
drodynamic flow of a Carreau-like fluid with a yield stress is self-
consistent, provided that four conditions are satisfied: € < 1 and
(20)-(22). However, five rheological parameters: yield stress Ty,
first viscosity #1, power index n, zero shear viscosity of Carreau-
like model mo, modified viscosity of Carreau-like model m, must
be known in order to evaluate these conditions.

The measurement of yield stress has been historically problem-
atical [20,21,35,36]. In the present study, we used the method gi-
ven by Kulicke et al. [37] as applied to a test gel that was
constructed using hydroxyethylcellulose and Carbopol. The pres-
ence of the latter macromolecule is what gives rise to yield stress
behavior in this gel [11]. This is a relatively high viscosity gel, in
the context of prototypes for use as vaginal microbicide vehicles.
Fig. 4 illustrates results of application of the Kulicke method to this
gel. In the method, a plot is created of stress vs. strain (not strain-
rate) for a gel, during unidirectional rotation in a rheometer with a
parallel plate configuration. We used a TA Instruments (New Cas-

Yoo (rad)

1000

/
0.1F #
0.001 F / e e O,of.w‘;

- 1 (Pa)
1 10 100 1000

Fig. 4. Strain at 60 s as a function of applied stress. The dots show experimental
data; the solid line shows the best-fit rheological parameters in Eq. (23).

tle, DE) 1500ex rheometer, and measurements were performed at
body temperature (37 °C). The yield stress is defined as the value
of stress in which there is an abrupt change in slope of the stress
vs. strain curve. This point was found by stepwise numerical com-
putation of the slope of the plot of stress vs. strain. This same rhe-
ometer was used to obtain viscosity as a function of shear rate (at
37 °C), using a controlled stress protocol that enabled measure-
ments at shear rates down to about 10> s~!. These data were pro-
cessed to obtain the values of the parameters in the Carreau model
[38], after first subtracting the value of measured yield stress from
the set of stress measurements obtained by the rheometer.

The data in Fig. 4 are the superposition of results from two
experiments. In the first, we acquired individual data over a larger
time step than in the second experiment (apparent in Fig. 4). Our
intent in the second experiment was to obtain a more refined pic-
ture of the change in slope. However, this second rheometric pro-
tocol created a different time history of mechanical conditions for
the gel. Denn [35] has pointed out that this can lead to differences
in configuration of the gel microstructure which give rise to differ-
ences in quantitative macro-scale stress vs. strain data. In both
rheometric experiments there are abrupt changes in the slope of
the curve and these occur at points that are relatively close. The
distinction is not important to the theoretical developments of
the analyses presented here. We have shown both sets of experi-
mental results to illustrate the challenges of measuring yield
stress.

We now propose a means by which to extract the five constitu-
tive parameters from the experimental data. The thickness of the
gel, h, in the rheometer is small compared to the length scale in
the direction of applied stress. Therefore, the lubrication approxi-
mation can be employed to model the flow in the rheometer.
Hence, we assume that pressure gradients are negligible in the
direction of applied stress, and consequently a linear velocity pro-
file is obtained, i.e. Couette flow. This is a good approximation be-
cause the strain at 60, yg0, has a linear dependence on applied
stress for small values of stress. Note that any significant pressure
gradient would result in at least a quadratic change in velocity,
leading to a curved relation between ygo and applied stress for a
Newtonian fluid. Substitution of the biviscosity model of a
Carreau-like fluid with a yield stress, Eq. (16), into the velocity
profile enables us to determine the velocity profile and, thus total
strain at 60 s, Yeo, as follows,

60th i Ty
0 if 7< T
1
A T—71T (1-n)/n
Y60 = (7}’) . (23)
60(t — 1y) [ o+~~~ | otherwise
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Experimental data obtained following the methods of [11] and the
fit of (23) into the experimental data are shown in Fig. 4. The fitted
values of the rheological parameters are given in Table 1.

Now that we have determined the constitutive parameters from
the straightforward analysis of the rheometer flow, we can turn to
examining the validity conditions for lubrication analysis of the
vaginal flow. Table 2 shows the resulting values after the parame-
ters in Table 1 are substituted into the conditions: € < 1 and (20)-
(22). In keeping with the need to develop a rapidly solvable
approximation to this flow for use in design calculations, we shall
accept as reasonably well-satisfied the criteria of Eq. (12).

Two of the conditions, 7 < 1 and 2y I« 1 are more critical.

MH mg
The first and third conditions, € < 1 and 2%, are satisfied as long

MH’
as the second and fourth conditions are satisfied separately, owing
to the small value of § = mp/nq, i.e. § < 1.

Table 1
Parameters of the constitutive equation for undiluted test gel.
7, (Pa) 71 (Pas) n m (Pas") mg (Pa's)
109.35 37268.1 0.4222 44.43 742.43
Table 2

Conditions given by (20)-(22) and the resulting values after the parameters given in
Table 1 are substituted.

e<x1 <1 2 <1 <1
0.0125 0.6275 0.0044 0.2196
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Given these experimental results, and having addressed (at
least approximately) the conditions of validity of the lubrication
approximation, we now consider a simulation of the coating flow
of this gel driven by squeezing from the distended vaginal walls.

The initial condition for the shape of the bolus is taken as,
h(x,t =0) = h.. + b exp [—(x/a)z] (24)

The fluid volume of such a bolus (above the offset h.) is
Vp = 2abcy/T, where c is the vaginal width, i.e. 2 cm. The volume
of the bolus here is 3 mL. As a scale for the height H, we choose
0.5 cm; this scale is of the order of magnitude of the maximum
height of the bolus at time zero. Here we choose h., = 0.05H and
b =0.45H, and obtain a = V,/2bcy/T.

The boundary conditions at the outlets of the channel far from
the gel bolus are given as:

oh »h

atx=FL:—=0; —=0

ox e (25)

Here, L is the half of the vaginal length, and taken as 20 cm.

The applied stress depends on several parameters such as the
pressure gradient and gel rheological properties. As the gel bolus
coats the vaginal surface, gradients in height (i.e. thickness), and
thus pressure gradients, become smaller. Therefore the shear
stress, which is proportional to the pressure gradient, decreases.
This enlarges the un-yielded region within the bolus and affects
the coating process. Fig. 5 illustrates the growth of the un-yielded
region within the gel over time. The contours of the shear stresses
(Pa) are plotted in Fig. 5 at 10, 1, 5, 30, 90, and 120 min (left-to-
right, top-to-bottom). Here, the yield surface (dashed line) within
the bolus is defined by Eq. (7). According to Eq. (7), an un-yielded
zone occurs below the dashed line, while the yielded region is

0.2
0.15
0.1
0.05
0
-5 -10 -5 0 5 10 15 -15
x (cm)
0.2 0.2

0.15

0.1
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Fig. 5. Contour plots of the shear stresses (Pa) along the channel (cm)at 10s, 1, 5, 30, 90, and 120 min (from left-to-right, top-to-bottom). Yield surfaces, Eq. (7), are plotted as
dashed lines. The un-yielded zone occurs below the dashed line, while the yielded region is located between the dashed line and the surface of the bolus (solid line). Note that
dashed lines are exaggerated. In reality, they are simply lines of infinitesimal thickness, and represent the interface between the yielded and the un-yielded regions.
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located between the dashed line and the surface of the bolus (solid
line). The graphs are plotted only for the upper half of the bolus be-
cause the domain is symmetric with respect to the x-axis. Thus, the
coating flow of the gel bolus begins as a flow of mostly yielding
material. There is a gradual transition to un-yielded material
which, in this biviscosity model, flows much more sluggishly.
The gel in this study (termed a “bolus gel”) was designed with
the intent that it does not spread appreciably along the vaginal ca-
nal. This design goal derives from the hypothesis that such limited
gel flow could improve retention within the canal over time. The
present analysis demonstrates this theoretically. However, the spa-
tial extent of gel spreading may be quite limited if the yield stress
is excessive.

4. Conclusions

In summary, we have studied an important biological problem
with significance related to efforts to prevent infection by HIV.
The problem reduces to flow of a shear thinning fluid, with a yield
stress, along a two-dimensional channel, as driven by the elastic
squeezing forces of the distended channel walls. This problem is
in the spirit of a large body of work on flows of yield stress fluids,
but has a number of features not previously considered and/or
combined, for example: (1) the constitutive equation is an alterna-
tive to the Power Law model (we used the Carreau model) to ac-
count for the low shear rate behavior of the types of fluids
relevant to this specific problem; and (2) the elastic forces driving
the flow are coupled to the flow. We investigated conditions under
which lubrication analysis is valid for the flow, and developed four
conditions for self-consistency of our approach, two of which dom-
inate: % < 1and % r’Z,—L < 1, when § = mo/n; < 1. In addition, we
illustrated the extraction of five rheological parameters from rheo-
metric data for a test gel which is an actual prototype gel for vag-
inal delivery of anti-HIV molecules: yield stress t,, first viscosity
11, power index n, zero shear viscosity of Carreau-like model my,
and modified viscosity of the Carreau-like model m. We presented
reasonable validation of the self-consistency conditions in the
model, in keeping with the goals of the effort to obtain a rapidly
solvable model suitable for use in design calculations. Finally, the
yield surface and height profile of a spreading bolus of the gel were
obtained. These showed growth of the un-yielded region of gel due
to the decreasing pressure gradients that accompany the flow. Be-
yond the application to vaginal coating by microbicide gel vehicles,
this work represents, more generally, extension of the work of
Wilson [32] to resolve the yield stress paradox, here for elastohy-
drodynamic squeezing flows of a yield stress fluid.
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